The Carnac protocol — or how to read the
contents of a sealed envelope

Michael Scott and Brian Spector

Certivox Labs
mike.scott@certivox.com

Abstract. Johnny Carson as long time host of the Tonight show often
appeared in the spoof role of Carnac the Magnificent, a mentalist who
could magically read the contents of a sealed envelope. This is in fact a
well known stock-in-trade trick of the mentalist’s craft, known as “billet
reading”. Here we propose a cryptographic solution to the problem of
billet reading, apparently allowing a ciphertext to be decrypted without
direct knowledge of the ciphertext, and present both a compelling use
case and a practical implementation.

1 Introduction

A credit card owner, a customer of a credit card company, wants to carry his
credit card number (CCN) around on his mobile phone, but stored in an en-
crypted form (lest his mobile phone should be stolen), that is tied to his iden-
tity. We call this the Ciphertext. However no encryption or decryption keys are
available to the owner. So although the owner may know his own credit card
details, the owner cannot either encrypt another’s details, or indeed decrypt his
own Ciphertext.

At some point the owner decides to make a purchase from a merchant. The
merchant knows nothing about the owner or their credit card, and has nothing
stored locally related to either. Ideally the credit card owner wants to enter into
a protocol with the merchant using the Ciphertext such that (a) the merchant
learns nothing about the Ciphertext (lest a dishonest merchant should use the
Ciphertext for their own purchases), but nonetheless (b) the merchant is able to
determine the credit card number and the associated authenticated identity of
its owner.

An immediate objection might be that in this scenario a stolen Ciphertext is
as good as a CCN; as it can clearly be used to make purchases from the merchant.
Later we shall show how, in a practical implementation, the Ciphertext can be
adequately protected just using a short PIN number. Using a PIN number to
protect credit card transactions is a well known and trusted mechanism, and the
same familiar PIN can be used here.

Clearly a trusted authority (TA) must be involved, probably belonging to the
credit card company, as otherwise there is no way to encrypt the CCN. Assume
that this TA is known to both the customer and the merchant. The TA has



its own master key s. The customer approaches the TA who encrypts the CCN
using the encryption key s to create the Ciphertext E;(CCN), which is given
to the customer. Note that it is not essential that the customer actually knows
their own CCN. The TA also issues to the merchant a value Dy, derived from s,
but from which s cannot be extracted.

The idea now is that the customer should be able to enter into a protocol with
the merchant, using E(CCN), such that the merchant ends up knowing CCN
and the identity of its owner, but in the process learns nothing about Es;(CCN).
By analogy the customer is able to magically determine CCN without touching
the “sealed envelope” that is E4(CCN). The trick is (and there has to be a trick!)
is that the mentalist/merchant has in their possession the apparently unrelated
secret Dy.

For the purposes of this paper we assume that a credit card number consists
of 5 blocks of 4 decimal digits each.

2 A simple authentication protocol

To realise our solution, we will use pairing-based cryptography. To be concrete
we assume the use of a BN elliptic curve [1] at the AES-128 level of security.
This is (and for our purposes must be) a type-3 pairing [3], where e : G X G —
Gr. The groups Gi, Gy and Gp are all of the same prime order q. We make
standard pairing-based security assumptions, including the XDH assumption
that the decisional Diffie-Hellman problem is hard in G;.

First consider a simple protocol, in which a client tries to authenticate its
identity to a server. We assume that the server is authenticated to the client in a
standard way, perhaps using the well known SSL protocol. Here ID is the client
identity and Hi(.) is a hash function which hashes its input to a point on Gj.

This protocol attempts to prove in zero knowledge to the server that the
owner of the claimed identity ID is in possession of the value sA issued to it by
the TA, where A = Hy(ID). The same TA has issued the secret sQ € Gz to the
server, where @ is a fixed public point in Go. Correctness follows immediately
from the well known bilinearity property of the pairing. See Table 1.

As an authentication protocol this has some obvious deficiencies (for example
it is subject to a simple replay attack), but for the moment we will ignore them.
Next we introduce a small error € into the client’s secret sA. See Table 2.

Observe now that the value of g as calculated on the server side can be used
to recover €. Strictly speaking as an authentication protocol we might consider
that the authentication has failed. Or we may permit a small deviation e and
judge the authentication a success. In either case we claim that the successful
transmission of € represents a secure narrow-band subliminal channel [6] whereby
a short secret € can be communicated from the client to the server.

For the server to find e requires the calculation of a pairing and the solution
of a discrete logarithm problem in Gp. The appropriate algorithm is the method
of Pollard’s Kangaroos [4]. This is a “square root” algorithm, which means that



Client
Generates random z < ¢
A= H.(ID)
U=2zA
V =—zsA
ID, U,V —

Server

A= Hy(ID)
g=1¢e(V,Q).e(U,sQ)
if g # 1, reject

Table 1. A simple authentication protocol

Client
Generates random z < ¢
A= H.(ID)
U=2zA
V=-z(s—¢€A
ID, U,V —

Server

A= H,(ID)
g=¢e(V,Q).e(U,sQ) = e(U, Q)

Solve for €

Table 2. The subliminal channel




for a 4-digit € usually only a few hundred multiplications in G will be required
to find €, which is completely practical.

To establish the security of the subliminal channel consider a powerful pas-
sive observer who has recorded the communication and subsequently somehow
captures the un-adjusted client secret sA. Now they are in possession of s4, xA
and z(s —¢€)A. However even this does not reveal €, as a consequence of the XDH
assumption,

Finally we upgrade our protocol to use a non-interactive version of a provably
secure zero-knowledge protocol for proof of identity [2], section 5.3, introducing
a time stamp T to prevent replay attacks. See Table 3, where the hash function
H(.) hashes its input to an element in F,, and the symbol | indicates simple
concatenation of the inputs.

Client Server

Generates random z < ¢

A= H:(ID)
U=2zA
y=HUIT)
V=—(x+y)(s—eA
ID, U, T,V —
if T is not current reject the connection

A= H,(ID)
y= H(U|T)

g=e(V,Q).e(U +yA,sQ)
g =e(U,Q)¢, solve for €

Table 3. The final protocol

3 Our use case solution

The way forward is now quite straightforward. The TA issues to the customer
whose identity is proven to be ID the secrets (s — €,)H1(ID|n) where €, is n-th
block of 4 digits of the CCN. This is done for each of the 5 blocks of the CCN,
for n = 1 to 5. This now constitutes our ciphertext Es(CCN). On the server
side Ds = s@. To communicate the CCN to the merchant’s server, we run the
above protocol 5 times. In practice the 5 client to server communications can all
be batched into a single blob of data, sharing the same time-stamp.



4 Discussion

In the particular use case considered here, the identity used in the protocol is of
no particular significance, and may be a pseudonym in a predetermined format
to preserve anonymity. However this identity is authenticated in the course of the
protocol, and is assumed to be bound to the associated CCN in the back-office
payment centre.

To protect the Ciphertext a simple idea borrowed from [5] is to subtract
from each component of it a PIN number, so that the secrets are now (s — ¢, —
PIN)H,(ID|n). This PIN can then be re-inserted when the protocol is run.
Clearly without the correct PIN, a valid CCN will not be received by the server.

If the merchant’s secret is stolen then clearly all captured Ciphertexts can be
decrypted. However a stolen merchant secret cannot by itself be used to make
purchases from honest merchants.

To remove any single point of failure, the TA can be distributed. In the sim-
plest scenario the client can retrieve s1Hi(ID) from one TA, soHi(ID) from a
second TA, and simply add them together to create sHy (ID), where s = s1 + so.
In this case the adjusted secret for our use case would be created by subtracting
the ¢; from just one of the TA master secret shares. Also the equivalent server se-
crets s1Q and s2@Q) can be applied separately as e(X, sQ) = e(X, 51Q).e(X, 52Q)
due to the bilinearity property of the pairing.

An alternate viewpoint would be to observe that the original input secret,
if protected by a human-memorisable password, might be subject to an off-line
dictionary attack. Here we first convert the secret to be protected into a form
where it is no longer vulnerable to such an attack, and indeed can be protected
by a simple PIN number.

References

1. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In
Selected Areas in Cryptology — SAC 2005, volume 3897 of Lecture Notes in Computer
Science, pages 319-331. Springer-Verlag, 2006.

2. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based iden-
tification and signature schemes. In Eurocrypt 2004, volume 3027 of Lecture Notes
in Computer Science, pages 268-286. Springer-Verlag, 2004.

3. S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156:3113-3121, 2008.

4. J. Pollard. Monte Carlo methods for index computation mod p. Mathematics of
Computation, 32, 1978.

5. M. Scott. Authenticated ID-based key exchange and remote log-in with simple
token and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002. http:
//eprint.iacr.org/2002/164.

6. G. Simmons. The subliminal channel and digital signatures. In Furocrypt 1984,
pages 364-378. Springer-Verlag, 1985.



